261

The induction rule of De Bakker and Scott
Wim H. Hesselink, February 1989

On the occasion of the Symposium:
“J. W. de Bakker: 25 years of semantics”

Manna’s book [M] contains a theorem that goes back to [BS], an unpublished paper of De
Bakker and Scott of 1969. This theorem is thus 20 years old. It is called “stepwise compu-
tational induction” ([M] 5.5). Disguised as Scott’s induction rule, the theorem can also be
found in De Bakker’s book [B]. More precisely, the book [B] contains a deterministic version
(5.37) and a nondeterministic one (7.16). The latter version heavily relies on continuity
with respect to the so—called Egli-Milner ordering. Continuity is roughly the same as finite
nondeterminacy, for it implies that every necessarily terminating command has a finite set
of potential results.

In this note in honour of De Bakker, I would like to announce a generalisation of his
induction rule to cases where infinite nondeterminacy is allowed. Actually, a full generalisa-
tion is not possible, for I will show a case with infinite nondeterminacy, where the induction
rule is not valid. For the proof of the result and for more details, I refer to [H2] and [H3].
The note [H1] contains a small application.

The rule is stated here in a form that differs considerably from the forms in [M] and
[B]. The reason is that I re-invented the wheel, so that I also invented my own formalisms.
On the other hand, the formalism to be described is more convenient for the applications
that I had in mind. In fact, my aim was program transformation rather than correctness.
It was only recently, that C. Hemerik pointed out to me that my result was a version of the
induction rule of De Bakker and Scott.

Command algebras

Command algebras are introduced to serve as an abstract syntax with a more flexible concept
of equality. They are inspired by De Bakker’s treatment of nondeterminacy in [B] chapter
7, and also by the process algebras of Bergstra and Klop [BK].

A command algebra A is defined to be a set with constants fail € A, skip € A and with
binary operators ;" and “}” such that the following axioms are satisfied

(0) ala=a alb=bfa,
(a)®)Jc=al(b]e) alfail=a,
fail; a = fail (a;b);e=a;(b;c),
skip;a=2¢a a;skip=a,
(alb);c=a;c]b;c a;(bjc)=a;b]a;c.

A command algebra A is equipped with a partial order “<” given by
a<b = a=alb.

262

It turns out that afb is the greatest lower bound of ¢ and b with respect to the order.
Therefore, it is natural to use the symbol | ior arbitrary greatest lower bounds in A. So,
if £ C A has a greatest lower bound in A, then that bound is denoted by ([z € E :: z).
The algebra A is called complete if and only if every subset of A has a greatest lower bound.
It turns out that a command ([z € E :: z) may be regarded as a nondeterminate choice
between the commands z € E.

Now we assume that a command algebra B is given. We regard the elements of B as
straight-line commands. We assume that the semantics of B is given by relational semantics.
So let £; be the state space and let £ = Z3U {L}. The meaning of a command c is given as
a subset M.c of the cartesian product o x £. A pair {o, 7) belongs to M.c iff 7 is a potential
result when command c is called in state 6. A pair (o, 1) belongs to M.c iff command ¢
need not terminate when called in 0. For a boolean function b on Xg, let 76 € B be the
command such that M.(7b) consists of all pairs (o, o) such that b.c holds, cf. [B] definition
7.8.

Procedures and recursion are treated as follows. We introduce a set H of the occur-
ring procedure names. We then form the polynomial algebra B[H], which consists of the
command algebra expressions in elements of B and H modulo the equalities induced by the
axioms (0) and the identity relations of B and H, see [H2] section 3.1. The next step is to
construct an embedding of algebra B[H] into a complete command algebra B[H]*, see [H3].
This completion satisfies the strong distributive law

(lpeBqeFp;g=(lpeExp)i(lgeFq)
for any pair of nonempty subsets E and F of B[H]".

A declaration of the procedures is a function d : H — B[H]*, where the body of
procedure h € H is defined to be the element d.h € B[H]*. In this way, recursion and
even mutual recursion is possible, and procedure bodies may contain unbounded choice.
The semantic function M from B[H]* to subsets of £g X T can be defined as the smallest
interpretation with respect to the Egli-Milner ordering and there are equivalent definitions
by operational means or by means of predicate transformers, cf. [H0]. In [H2], I use predicate
transformer semantics.

The number of recursive procedures need not be finite. In fact, infinite families of
procedures are used to allow value parameters and procedure parameters, cf. [H1]. For
example, a procedure p with an input parameter v of type V is regarded as a family of
commands p.v. A call of procedure p with as actual parameter the state function f is
defined as the command p(f) = (J[v €V = f =v); p.v).

The generalised induction rule of De Bakker and Scott

Instead of the generalised correctness formulae as introduced by De Bakker, cf. [B] 5.25
and 7.11, we use congruences, which are defined as follows. A congruence on a complete
command algebra is defined to be an equivalence relation ~ such that for all commands p,

g, r,and s

263

p~qg A r~s > p,r~gq;s
and that for all sets of commands E, F

(VpeE::(qeF:p~q) A (VgEF:(IpeE::p~yg))

= (lpeEup) ~(lgeFuq).
Let command Q € B be the abortive command with semantics given by

(o, 7)EMQ = r=1,
and let da : B[H]* — B[H]* be the function such that da.s is obtained from expression
s by substituting 2 for every procedure name in expression s. In the same way, we let
d* : B[H]* — B[H]" be the function such that d*.s is obtained from s by replacing every
procedure name h in expression s by its body d.h.

In [H3), we introduce a certain subset Liaof B[H]*. Let BU be the set of the commands

in B that are of finite nondeterminacy. The results of [H3] imply
(1) BcLia A (BU;H;B)C Lia

A (Vp,q€ Lia::p|q € Lia).

The generalisation of the induction rule is

Theorem ([H3] 7(14)). Let E be a set of pairs of elements of Lia such that
(Y(z,y) € E:: M.(da.z) = M.(da.y)),

and that for every congruence ~ on B[H]" we have
Mz, y)€eEzz~y) => (V(z,y)€Ed.z~d"y).

Then M.z = M.y for all pairs (z,y) € E.

In order to show that the condition on Lia cannot be omitted, let us consider the following
example in which the theorem is not valid. Assume that there is one integer variable i. Let
h be the procedure name with the declaration

dh=(2(i>0);i:=i—1;h;i:=i+1] ?(i <0)).
Here, “” has higher priority than [. Clearly, h is semantically equal to skip. Let p € B
be a command that is guaranteed to terminate and that assigns to i an arbitrary positive
value. Thus, the composition (p;h) is guaranteed to terminate. This implies that
(2 M.(p;h) # M.(p;h [Q).
On the other hand, let us take E to be the singleton set

E = {{(mh),(mh [9Q))}.
It is possible to prove (cf. [H2] section 5.6) that both formulae of the theorem are satisfied.
By (2), however, the consequent of the theorem is false. So, the condition that the commands
be element of Lia is violated. The first conclusion is that this nasty condition cannot be
omitted. Moreover, from formula (1) we get that (p;h) ¢ Lia whereas p and h are both
element of Lia. Therefore, Lia is not closed under composition.

Let me conclude with a more positive remark. The note [H1] contains an application of
the theorem to a recursive procedure with an input parameter and a procedural parameter.
In this case it is important that the set E of the theorem is allowed to be infinite, and that
the commands that occur in E can be complicated expressions.

264

References
[B] J. de Bakker: Mathematical theory of program correctness. Prentice~Hall International,
1980.

[BS] J.W. de Bakker, D. Scott: A theory of programs. IBM Seminar Vienna, Austria (August
1969). Unpublished notes.

[BK] J.A. Bergstra, J.W. Klop: Algebra of communicating processes, in: J.W. de Bakker, M.
Hazewinkel and J.K. Lenstra, eds., Proc. CWI Symp. on Mathematics and Computer
Science (North-Holland, Amsterdam, 1986)

[HO] W.H. Hesselink: Interpretations of recursion under unbounded nondeterminacy. Theo-
retical Computer Science 59 (1988) 211-234.

[H1] W.H. Hesselink: Initialisation with a final value, an exercise in program transformation
(WHH 186). To appear in the Proceedings of “Mathematics of program construction”,
June 1989.

[H2] W.H. Hesselink: Command algebras, recursion and program tranformation (WHH 36).
Tech. Rep. CS 8812, Groningen University 1988.

[H3]) W.H. Hesselink: Command algebras with unbounded choice (WHH 47). Draft, 1989.

[M] Z. Manna: Mathematical theory of computation. McGraw—Hill Book Company 1974.

Address: Rijksuniversiteit Groningen, Department of Computing Science
P.O. Box 800, 9700 AV Groningen, The Netherlands

